What is a Black Hole, Really?

If you’re a sci-fi fan, you’ve probably seen these in movies. And I’m guessing you’ve heard a lot about them in pop culture. The problem is, pop culture and movies don’t do a very good job of describing black holes.

First off, let me clear up a common misconception: Black holes do not act like giant space vacuum cleaners, sucking in everything around them. Describing them as “gobbling up” anything is inaccurate.

The representation in movies that bugs me the most is in J.J. Abrams’ Star Trek reboot, when the bad guy falls into a black hole and the good guys almost get pulled in with him. First of all, please…black holes do not growl. And basically none of what happens in that scene is accurate.

So…what are black holes, really?

Continue reading

Pulsars as Neutron Stars

For those of you who missed my last couple of posts, allow me to introduce the neutron star: a stellar remnant similar to a white dwarf, but much denser, so dense that its protons and electrons have combined to form a neutron soup.

A neutron star forms from the collapsing core of a star between 10 and 20 M (solar masses). Its collapse produces powerful magnetic fields and extremely high temperatures, but because it becomes so small—less than the size of Los Angeles—it is very faint and radiates away its heat very slowly.

The exception to that rule comes in the form of two powerful beams of radiation that blast away from the object’s magnetic poles. As a neutron star spins—at around a hundred times per second—these radiation beams sweep across the sky like the the beams of a lighthouse.

If these beams happen to sweep over Earth, human observers see regular, rapid pulses of light. This visual phenomenon produced by neutron stars is called a pulsar.

Now that we have a basic understanding of neutron stars and pulsars, let’s explore some of the details of how these extreme objects work.

Continue reading

What is a Pulsar?

Imagine you’re observing the sky with a radio telescope. Observing the faintest, lowest-energy photons the universe has to offer is your specialty. You study interstellar dust clouds, protostars, and lots more.

One day, though, something interesting pops up in your data. You’re looking at raw data on a computer screen, not an eyepiece of a “typical” (optical) telescope—you get all your data from the giant dish above. Strangely enough, there’s a series of regular pulses.

At first, you think it’s just “noise” from sources on Earth—like static on your car radio. But then you see it, day after day, in the same place in the sky. It’s not static. It’s real.

You wonder if this is perhaps evidence of contact with a distant civilization. Personally, I’d hope for that one. Unfortunately, more research leads to the conclusion that it’s nothing of the sort—within weeks, you find that there are several other objects in completely different parts of the sky, all emitting similar (but different) pulses.

You’ve discovered a pulsar. But…what exactly is a pulsar?

Continue reading

Why Neutron Stars Should Exist

Above is a theoretical rendering of a white dwarf, the collapsed husk of a low-mass or medium-mass star. Interestingly enough, these strange cosmic objects—which begin their existence as intensely hot balls of carbon the size of the Earth—may eventually cool off and crystalize into giant space diamonds.

White dwarfs are made up of free-floating hydrogen and helium nuclei and degenerate electrons—and their mass is supported by the nature of these electrons.

But degenerate electrons, like any other material, have a specific material strength. What happens if they’ve, well…just got too much stuff to support?

Continue reading

What About Binary Systems?

In the constellation of Perseus, there is a star named Algol that exists in a binary system. The binary consists of two stars: a massive main-sequence star and a less massive giant.

According to what we’ve explored so far…that doesn’t make any sense.

More massive stars evolve faster than less massive ones. They expand into giants before less massive stars do. In any one binary system out there, we should observe a more massive giant and a less massive main-sequence star, not the other way around.

But the Algol system is not alone in this peculiarity. Over half the stars in the universe are binaries, and in a number of those, the more massive star is still on the main sequence.

Why?

Continue reading

What are White Dwarfs?

Now that we’re finally talking about white dwarfs, we’re getting into the really cool stuff.

In my last post, we explored planetary nebulae, and we left off with a question: where does the fast wind that forms planetary nebulae come from? Well, remember that planetary nebulae are formed from the atmospheres of medium-mass stars, but there’s still the stellar interior to worry about.

White dwarfs are objects comparable in size to our own Earth. They are the remains of medium-mass stars like our own sun. Often, you can see a white dwarf at the center of a planetary nebula with a large telescope. Together, they form what’s left of a star after it loses stability completely.

But there’s way more to a white dwarf than that…

Continue reading

How Low-Mass Stars Die

When we talk about star death, we’re not really talking about death. We’re talking about the end of a functioning star. Astronomers tend to personify cosmic objects like stars, saying that they are born and die, when it’s more like they transition into something new.

With stars in particular, there’s two main courses their “life cycles,” such that they are, can take: one for massive stars and one for low-mass stars.

We can further subdivide low-mass star “deaths” into those of red dwarfs—like our nearest stellar neighbor, Proxima Centauri—and those of medium-mass stars, like the sun.

But before we dive into the final stages of these stellar life cycles, let’s review what kinds of stars we’re talking about here…

Continue reading

What is a “Normal” Star?

If we were talking about people, I’d say there’s no such thing as a “normal” person. We’re all weird in our own way—that’s what makes us unique and ourselves.

However, there’s such a thing as a functional human—a human with a combination of functional organ systems and/or prosthetics that makes daily life navigable. And just as no star is exactly alike, there are functional stars.

Nature makes mistakes all the time. It is not intelligent—it doesn’t know the best way to do anything. It doesn’t know the path of least resistance or least effort. It just tries everything at random, and we get to observe what happens.

A “normal” star is what happens when nature stumbles upon the right conditions. But…what does that mean?

Continue reading

Star Mass and Density

Bright-Stars-in-Space-4K-Wallpaper

What makes a star shine bright?

Much earlier on—probably months ago now—I explained how something called the proton-proton chain generates massive amounts of energy within stars, and enables them to fuel whole solar systems. That’s the battery of a star.

We’ll address the proton-proton chain later, when we start talking about star life cycles. We’ve still got some talk about nebulas and interstellar space to go before we get that far. For now, what’s important is that the proton-proton chain depends on high density.

That is, stars will have the strongest batteries if they have very dense interiors. It doesn’t really matter how dense their middles and atmospheres are. But conditions in their cores must be very dense.

You’ll find, if you study stars closely, that there is a definite relation between their densities, masses, and luminosities. Continue reading

The Average Star

solar_system_poster.jpg

What the heck is the average star like?

We’ve talked about a lot of stars over the past few weeks. We’ve discovered the vast distances between the stars, looked more closely at what really makes a star bright, and covered all kinds of ways to classify stars—from their spectral type to their luminosity class.

Most importantly, we’ve looked at the H-R diagram, the diagram that classifies stars by their color, temperature, composition, and luminosity…and relates those properties with many other features stars have.

We know what kinds of stars are out there. We know they range from thousands of times smaller than the sun to thousands of times larger. We know they range from desperately faint to incredibly luminous. We know they come in all the colors of the rainbow.

But how many blue stars are there? How many small stars are there? Are most of them small, or are there about the same number of small stars as large ones? Continue reading