What Makes a Star Blue?

image.png

Albireo is the distinctive double star in the head of the constellation Cygnus. You can find it yourself if you look for the Summer Triangle amid the dusty trail of the Milky Way across the night sky.

The brighter, orange star of Albireo is a K3-class bright giant. That means it’s just a few thousand Kelvins (Celsius degrees plus 273) cooler than the sun. But it’s also larger—70 times the sun’s radius—and that makes it brighter than you would expect.

The blue star, on the other hand, is a B8-class dwarf. It has only about 3.5 times the sun’s radius, although it’s hotter by about 7422 Kelvins.

Neither star in Albireo is particularly unusual. There are doubtless millions, even billions, of other stars similar to each one. But Albireo certainly offers us the most striking contrast. Bright blue and red stars don’t often appear so close together.

But what exactly gives these stars their distinctive colors? Continue reading

The H-R Diagram

Planet-Bearing-Stars

There are 250 billion stars in our galaxy alone. Many are much like the sun, labeled with the Latin sol for “sun” in this diagram. But many more are not quite what we might expect stars to be like, after living under the light of a white G2 star our whole lives.

Wait a second. White G2? Since when is the sun white? And what the heck does G2 mean?

I’m talking about its spectral type—a classification system that organizes stars by their temperatures, determined by what they’re made of. The sequence is O, B, A, F, G, K, and M, in order from hottest to coolest. The sun is a fairly cool star.

But the thing is, the spectral types don’t actually tell you anything about how bright the star is, how big it is, how luminous it is…I could go on.

So how can we make things easy for ourselves and classify stars according to spectral type, size, and luminosity all at the same time? Continue reading

Stars and Radiation

burning-star-space-wide.jpg

Stars are hot.

Really hot. Hot enough to have energy to spare for their planets. If our star wasn’t hot, we couldn’t live on Earth. And our star isn’t even particularly hot for a star. It’s a middle-aged star of low mass, so it’s relatively cool compared to other stars.

You might also notice that stars aren’t all the same color. There are redder stars and bluer stars and more whitish stars.

We know stars are hot. They’re also bright. And they’re different colors. But how does that all translate to radiation—and how can we see it? Continue reading