Energy Flow from the Sun’s Core

wind and water.jpg

Ask any climate scientist how we should power our world without fossil fuels, and they’re bound to tell you about wind and solar power.

You might be surprised to know that both of these come from the sun. Solar panels collect the sun’s energy directly, but we wouldn’t even have wind if not for the sun.

Why? Because in order to move, you need energy. And not just you. I’m talking about every speck of material on Planet Earth that shifts an inch. It’s because it has energy.

That energy can come from a lot of places. Earth is still a dynamic world with a hot interior, but it’s not hot enough to sustain all the life and other movement on its surface. A lot of our planet’s energy comes from the sun.

But here’s the big question. How the heck does it get here? Continue reading

Our Sun: The Corona

corona1.en.jpg

When we observe our sun’s corona, we discover something odd.

It’s really, really hot.

But…wait a second. How is that odd? Shouldn’t the sun be hot?

Well…yes. It should, and it is. Its surface temperature is almost ten thousand degrees Fahrenheit, and its core is many times hotter. But there’s a basic law of physics that says energy flows from hotter regions to cooler regions.

The core and photosphere (the visible surface) follow this rule. Even the chromosphere, the lower atmosphere, does as it’s told. But the corona is made up of gases that are hotter than the chromosphere.

What’s up with that? Continue reading

Our Sun: The Photosphere

sun photosphere.jpg

Recognize this?

You might, if you’ve ever seen the sun through a telescope before. What you’re seeing is the photosphere, the layer of the sun whose light reaches Earth. This is the only layer you’ll ever see, without the aid of a solar eclipse.

Wait a second…what do I mean, layers? I mean, I know what a layer is, but what kind of layers does the sun have?

Well, it’s got a few, just like the Earth. Continue reading

The Reason for the Seasons

aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzAzNC8wMjEvb3JpZ2luYWwvc2h1dHRlcnN0b2NrXzEwMjkzNzczMy5qcGc=

As a born Californian, I never saw seasons this dramatically until I went to college in Flagstaff, Arizona.

I remember, in my first year here, when I was taking a walk around campus with a few friends. We passed over a riverbed where water was gently trickling along. Green grass and brush lined the banks. The sight absolutely captivated me. I had never seen anything like it, even in the springtime.

Then winter hit in all its blizzarding glory. At night, the temperature dropped below freezing. Snow fell in flurries that contrasted beautifully with the night. By morning, snow banks over a foot high lined the footpaths. To say nothing of the state of my winter jacket!

Summer in Flagstaff is hot. And I mean hot. It’s sweltering. Everyone crowds under the nearest tree. I experienced two days of it during orientation, and I never want to be here in the summer again.

Flagstaff’s autumn isn’t quite like the red and golden season depicted above. It pours. The rain sweeps down from the skies in torrents, soaking you through to the bone within minutes of being outside. Don’t think you’re safe under an umbrella. Better get some waterproof slacks to cover up those jeans, or you’ll be freezing in your classes all day.

I remember learning that my good blogging friend, the Momma, experiences the opposite seasons. When it’s pouring over here, it’s all green and sunny in Australia. When it snows here, she’s getting summer—I only hope it’s not as sweltering as it is in Flagstaff!

But why? Why should Australia have seasons that are opposite those in America? Continue reading