The Different Shapes of Galaxies

By now, we’ve spent a heck of a lot of time exploring spiral galaxies.

It makes sense–they’re certainly the most photogenic. Seriously. Do me a favor and do a quick Google search for galaxies. When I did, nearly all the results were spirals…even though spirals are not the most common galaxies in the universe.

There is, of course, another reason we’re so familiar with spirals right now. We dipped our toes in the waters of studying galaxies by exploring our own home galaxy–a reasonable starting point. Our Milky Way just happens to be a spiral.

Well…it doesn’t “just happen” to be a spiral. But we’ll get to the reasons for that…

For now, let’s take a dive into all the different types of galaxies.

Continue reading

What Are Spiral Arms?

Probably the most spectacular feature of our Milky Way galaxy is its spiral arms.

We can’t get a probe far enough out yet to take a galactic selfie, but astronomers are reasonably sure that we live in a spiral galaxy. Observations of other spiral galaxies offer clues to what kind of objects can help us trace out the shapes of spiral arms, called spiral tracers. Using those spiral tracers, we’ve been able to map out patterns within our own galaxy that appear to be spiral arms.

Over the years, astronomers have tested the spiral arm hypothesis against the evidence again and again, and there is now a great deal of confidence that the Milky Way is a spiral galaxy.

More than that–star formation, which we know is limited to the disk of the galaxy (rather than its central bulge or halo), appears to be specifically found in the spiral arms.

But why? And for that matter…what even are spiral arms?

Continue reading

Exploring the Milky Way’s Spiral Arms

The Milky Way–our home galaxy–is a spiral galaxy, a classification I often describe as pinwheel-shaped.

The main difference between a spiral galaxy’s shape and a pinwheel’s shape is that spiral galaxies, like the Milky Way, only have two main arms. For the Milky Way, those are the Scutum-Centaurus arm and the Perseus arm. If you study the image above, you’ll notice that all the other arms are a bit wispier, and most branch off from the main arms.

There’s just one problem, though…

How do we even know that this image is an accurate depiction of our galaxy? How do we know that the Milky Way has spiral arms?

Continue reading

Stellar Evolution Demystified

Whaddya know…after what seems like a geological age, we’re finally done with stellar evolution! And we’ve covered a truly ridiculous amount of information.

We’ve covered a star’s relatively gentle, humble beginnings within the collapsing cores of giant molecular clouds (or GMCs). We’ve explored how stars begin fusing hydrogen nuclei for fuel and how their interiors work.

We’ve covered how they evolve across the main sequence, and how they eventually exhaust their fuel, lose stability, and expand into giants.

We’ve delved into the way low- and medium-mass stars quietly expel their atmospheres and shrink into inert balls of carbon called white dwarfs. And we’ve watched as massive stars burst apart in brilliant supernova explosions and then collapse into some of the most extreme objects in the universe, neutron stars and black holes.

Those three end states–white dwarfs, neutron stars, and black holes–are known as compact objects, and we’ve explored them too.

If it all seems super complicated…I understand. But now, just as I did once with types of stars, I’m going to give you an overview to put it all together.

Continue reading

Stars: The Limits of “Normal”

How big—or small—can a star get?

As with most questions in astronomy, the answer to that is not definitive. But stellar models can give us a pretty good idea.

Mathematical models of stars tell us that their life—or, to use a less personifying term, function—depends on the balance between two opposing forces: internal pressure and gravity.

Stars produce energy to function. They don’t just do this to light up our skies and provide for life on their orbiting worlds. They need to produce energy to constantly support the weight of their own mass.

The more massive stars are, the more energy they need to produce—and the reverse is true too. There has to be a balance.

But is there a limit? Is there a point where balance is impossible?

Continue reading

What is Contagious Star Formation?

aHR0cDovL3d3dy5zcGFjZS5jb20vaW1hZ2VzL2kvMDAwLzA2OC8zMjQvb3JpZ2luYWwvb3Jpb24tbmVidWxhLmpwZw==.jpeg

Recognize this nebula?

Yeah…we’re talking about the Orion Nebula again. I know, we already took a tour through the Orion constellation in my last post…but there’s still more to cover about how stars come to life, and Orion is still the best case study I know.

So…hold up a second. Contagious star formation? What’s that supposed to mean? I mean, usually, when you think about “contagion,” you think of catching diseases from others around you. So…can stars get sick?

Well, no. Stars are pretty good at maintaining their own homeostasis, something I’ll explain in a later post. By “contagious” star formation, I mean that star formation can trigger more star formation.

Basically…forming stars is contagious.

But how the heck does that happen?

Continue reading

How are Stars Born?

Astronomers-Take-a-First-Glimpse-at-the-Birth-of-a-Triple-Star-System.jpg

Astronomers have discovered that the clouds of gas and dust—the interstellar medium (ISM)—found between the stars are made of the same materials as the stars themselves. In fact, hydrogen is the most common element in both stars and the ISM, followed closely by helium.

But it would be more accurate to say that stars are made of the same material as the ISM, not the other way around.

This is because all of the stars formed out of material in the ISM at some point millions to hundreds of billions of years ago. And when they die, they return that material—what’s left of it—to the ISM.

Specifically, stars form out of the giant molecular clouds (GMCs) of the ISM. But how?

Continue reading

Where Did the Interstellar Medium Come From?

m17x800ignacio.jpg

Contrary to popular belief, space is not empty. The space between the stars is filled with clouds of dust and gas. And this space—the interstellar medium—is incredibly beautiful and fascinating.

I often refer to the interstellar medium as the galaxy’s “backstage.” Why? Because it’s not the part of the universe that astronomy enthusiasts usually think about. And yet, there are whole studies devoted to studying this natural wonder of the universe.

Also, the interstellar medium is largely hidden from us. There are ways we can detect it—when light from a distant star passes through it, for example. And with our eyes, we can see nebulae, the visible evidence of this interstellar expanse.

The backstage of a theater is similar—it’s not the main part of the show, but you sometimes see evidence of it in the forms of new costumes donned as the play progresses and new props brought into play. The audience often forgets about it entirely.

Nevertheless, it’s beautiful. Stars are born out of giant molecular clouds, triggered by compression from expanding bubbles of coronal gas. The interstellar medium spells our beginning.

But how did it get there?

Continue reading