Spots on the Sun


Have you ever looked at the sun, and seen something like this?

Now, before you decide to look at it right now and see what you see, it’s my responsibility as an amateur astronomer to remind you of the safety risks. Focusing your eyes on the sun is dangerous—there’s a reason our eyes automatically flinch away.

How dangerous, you ask? Dangerous enough to burn and even scar your retinas, permanently damaging or even destroying your vision.

Yes, I’m serious.

Now, all this is not to turn you off solar observing entirely. There are safe—and cheap—ways to look at the sun, and see its spots.

But what exactly are sunspots?

Continue reading

Our Sun: The Chromosphere

sun layers

This diagram is a tiny bit misleading.

Here, it looks like the chromosphere is the visible surface of the sun, with the photosphere just below. Really, we never see the chromosphere. If you ever look through a solar telescope at the sun, the photosphere is the surface that you see.

The sun is structured a lot like the Earth, just in that it has a core, a dense region between the core and the surface, a “surface” layer, and a few atmospheric layers. The chromosphere is part of that solar atmosphere. And you never see it.

Well…almost never. Continue reading

Types of Stars


Meet the sun: a G2 class star towards the middle of its lifespan.

Wait a second…G2? What does that even mean?

It’s all part of a way astronomers break down the billions of stars in the sky and organize them by temperature. They can use a star’s spectrum to figure out what it’s made of, and that helps them figure out how hot it is.

But really…being able to read stellar spectra (plural for spectrum) is only so helpful. There are billions. It helps to have an organizational system.

That way, if an astronomer sees a stellar spectrum that looks a certain way, they can know immediately that it’s a certain class of star.

So…how exactly are stars classified? Continue reading

The Building Blocks of the Universe


“The Building Blocks of the Universe.” When you put it that way, atoms sound less like a topic specifically for a chemistry class and more like something astronomers might discuss.

They really are. I’ve got a fantastic reason to include atoms under astronomy, and its name is stellar spectra.

We’ve encountered stellar spectra before in these astronomy posts. When I wrote about the spectrograph, an instrument astronomers use to study data, I talked about spectral lines. I also promised we’d come back to elaborate on that later.

We’re not actually going to talk about the spectrograph in this post. I’m saving that for another time. For now, I’m going to cover atoms in a little more detail.

That way, we’ll have a better understanding of how they interact with light later on—and that will help us understand the spectrograph. Continue reading

Info in a Rainbow

milky way.jpg

What do you see in this image?

If you’re from a larger city and haven’t had the opportunity to venture into a place like the desert, you might not know what you’re looking at. That’s the Milky Way, our name for our galaxy.

Inside this galaxy are billions of stars, including our own. Galileo Galilei was the first to discover that it was really many tiny points of light, not just a cloud-like haze across the dark night sky.

We can’t see our galaxy from outside, but we can learn a lot about it by looking out at it from within. It’s difficult. It’s like trying to learn about a building if you can never step outside one of its rooms.

But we can do it, with the help of the spectrograph. Continue reading