Spectroscopic Binary Stars

200.gif

Consider a solar system far different from our own. A solar system governed by two suns, and consisting of planets we can only dream of.

Would it surprise you to hear that, based on recent discoveries, that might actually be the norm?

The surroundings we grow up in determine our outlook on the world, and this is never more true than with our solar system. Our eight planets (though some would vehemently insist upon nine) and their parent star are all we know.

But what if I told you that most of the stars you see when you look up at the night sky have companions? And often, these companions are impossible to detect by visual means.

So how do we know they exist? Continue reading

Star Types Demystified

image.png

By now, I’ve introduced you to a lot of different ways to classify stars.

Months ago, I talked about the different spectral classes—O, B, A, F, G, K, and M. Even before that, I told you about apparent visual magnitude, our ranking system for how bright stars appear to the naked eye.

More recently, we explored absolute visual magnitude and the related absolute bolometric magnitude and luminosity. All these are related to a star’s actual brightness, not just how bright they seem to be from Earth.

And last but not least, we talked about the H-R diagram and how to rank stars by their luminosity classification.

In short, it may seem like sorting stars is a complicated business. But it’s not really. And here, I intend to give you an overview to put all this together. Continue reading

What Makes a Star Blue?

image.png

Albireo is the distinctive double star in the head of the constellation Cygnus. You can find it yourself if you look for the Summer Triangle amid the dusty trail of the Milky Way across the night sky.

The brighter, orange star of Albireo is a K3-class bright giant. That means it’s just a few thousand Kelvins (Celsius degrees plus 273) cooler than the sun. But it’s also larger—70 times the sun’s radius—and that makes it brighter than you would expect.

The blue star, on the other hand, is a B8-class dwarf. It has only about 3.5 times the sun’s radius, although it’s hotter by about 7422 Kelvins.

Neither star in Albireo is particularly unusual. There are doubtless millions, even billions, of other stars similar to each one. But Albireo certainly offers us the most striking contrast. Bright blue and red stars don’t often appear so close together.

But what exactly gives these stars their distinctive colors? Continue reading

How Far Are the Stars?

starscape_by_martianlightsaber.jpg

Stars don’t look small because they’re really the size of pinholes in a blanket. The smallest are the size of Earth. The largest have 128,865,170 times Earth’s diameter.

They look small in the sky because they’re distant. It’s for the same reason you can tell how far away your surroundings are by how small they appear; you know the mountains on the horizon are far away because they look shorter than your house.

The nearest star to our solar system is 4.3 light-years away. But what exactly is a light-year?

Light seems to travel instantaneously from your flashlight to the nearest surface, but it actually has a finite speed. In one second, it travels 299,792 km—fast enough to wrap itself around Earth’s equator 7.5 times.

In one year, light covers 9,460,730,472,580.8 kilometers, enough to wrap around the sun’s equator 2160.5 times. Four times that is the distance to the nearest star.

But how do we know this? Continue reading

Star Luminosity Classes

Stars.jpg

What do you think it would mean for a star to be in a specific luminosity class? I mean…does that mean they go to school to learn how to be bright?

(Ha, ha…yeah, I know, bad astronomy pun.)

Well…not quite.

Stars can be sorted in a lot of ways—and a good thing, too, because there are literally trillions upon trillions of them. Astronomers would be lost if we couldn’t sort them into groups to study.

They can be sorted according to spectral type (composition and temperature), apparent visual magnitude (how bright they look to the naked eye from Earth), and absolute visual magnitude (how bright they would look to the naked eye from ten parsecs away).

They can also be sorted according to their absolute bolometric magnitude (how bright they would look from ten parsecs away if the human eye could see all types of radiation).

And…they can even be sorted according to their luminosity. Continue reading

The H-R Diagram

Planet-Bearing-Stars

There are 250 billion stars in our galaxy alone. Many are much like the sun, labeled with the Latin sol for “sun” in this diagram. But many more are not quite what we might expect stars to be like, after living under the light of a white G2 star our whole lives.

Wait a second. White G2? Since when is the sun white? And what the heck does G2 mean?

I’m talking about its spectral type—a classification system that organizes stars by their temperatures, determined by what they’re made of. The sequence is O, B, A, F, G, K, and M, in order from hottest to coolest. The sun is a fairly cool star.

But the thing is, the spectral types don’t actually tell you anything about how bright the star is, how big it is, how luminous it is…I could go on.

So how can we make things easy for ourselves and classify stars according to spectral type, size, and luminosity all at the same time? Continue reading

Stars and Proper Motion

uma.gif

Recognize this constellation?

Well, at the time stamp of about 2000 AD (CE), I think you will. It’s one of the most famous constellations in the night sky.

Well, technically, it’s not a constellation at all.

It’s an asterism—a commonly recognized grouping of stars that isn’t actually official as a constellation. There are tons of asterisms that you no doubt recognize…the Summer Triangle, the Great Square of Pegasus, the Big Dipper.

That’s right. That mess of stars up there that keeps changing for some reason…that’s the oft-recognized Big Dipper, part of the constellation Ursa Major.

So why the heck are the stars moving? Continue reading

Spots on the Sun

sunspot032901.gif

Have you ever looked at the sun, and seen something like this?

Now, before you decide to look at it right now and see what you see, it’s my responsibility as an amateur astronomer to remind you of the safety risks. Focusing your eyes on the sun is dangerous—there’s a reason our eyes automatically flinch away.

How dangerous, you ask? Dangerous enough to burn and even scar your retinas, permanently damaging or even destroying your vision.

Yes, I’m serious.

Now, all this is not to turn you off solar observing entirely. There are safe—and cheap—ways to look at the sun, and see its spots.

But what exactly are sunspots?

Continue reading

Our Sun: The Chromosphere

sun layers

This diagram is a tiny bit misleading.

Here, it looks like the chromosphere is the visible surface of the sun, with the photosphere just below. Really, we never see the chromosphere. If you ever look through a solar telescope at the sun, the photosphere is the surface that you see.

The sun is structured a lot like the Earth, just in that it has a core, a dense region between the core and the surface, a “surface” layer, and a few atmospheric layers. The chromosphere is part of that solar atmosphere. And you never see it.

Well…almost never. Continue reading

The Doppler Effect

ice cream truck.jpg

Have you ever heard the ice cream truck?

When I was little, I remember hearing the ice cream truck all the time. Just the sound of the opening notes of “Pop Goes the Weasel” were enough to propel me to the door, where I’d beg my parents to let me go out.

Of course, I didn’t always make it out front in time. But one day, my dad found a way to solve that problem—by actually getting in the car and chasing the ice cream truck.

I remember us driving around the neighborhood, following that white truck around. A few times, it slowed and stopped, but when we stopped too, it kept going again. It took a while for the driver to realize we were following him!

Eventually, we caught it, and had a good laugh over it. But the moral of the story is…have you ever noticed that you can tell if something is moving toward you or away from you, just by if it’s getting louder or quieter?

The same trick works for stars…sort of. Continue reading