Helium Ignition in Stars

When I first began learning about stars, I expected them to be violent and chaotic places. And to an extent, they certainly are.

Pressures are unbelievably high in their cores—high enough to smash protons together, and this is no small feat. And near their surfaces, magnetic field loops twist and tangle and a number of eruptions disrupt satellite function on Earth from time to time.

Beyond the obvious, though, stars are actually surprisingly…peaceful.

While stable, they only produce enough energy to sustain their own mass. Their way of maintaining homeostasis is beautiful in its simplicity.

But this can’t last forever. Eventually, stars exhaust their hydrogen fuel. Their cores begin to contract and their outer envelope expands to enormous proportions.

What’s next for a star—and why?

Continue reading

What Keeps a Star Stable?

animal_star.jpg

All life as we know it has to maintain homeostasis—that is, keep internal goings-on regulated. Body temperature is just one example. Mammals can maintain a stable body temperature with no trouble. Reptiles have to bask in the sun to keep warm.

You’re probably familiar with this idea. When you sweat, your body is trying to cool down. When you shiver, it’s trying to warm up. These are all examples of your own body maintaining its own homeostasis.

And then there’s blood pressure, heart rate, hormones, and pH—not that I have any real idea how all that works, but I know they’re all things that your body regulates on its own. Homeostasis is an important thing. Basically, when it fails, things go wrong.

And stars do the same thing. Continue reading