A Telescope Tour

telescopes-testing-lowres-3712

For the past few days, I’ve done a lot of talking about differences between types of telescopes and mounting systems. On occasion, I’ve mentioned some of their parts, though I haven’t focused on that.

Today, I will.

This post is meant to be a brief overview of differences between telescopes and their parts. If you want some more in-depth explanations, I’ll link back to those I’ve already written.

In the image above, you see just a few different examples of telescopes. And just in this image, they range far and wide. Most stand on tripods, but some don’t. I can see two different telescope shapes. Some have the eyepiece in different places.

There are more variations of telescopes than are shown here.

So climb on board…I’m about to take you on a telescope tour! Continue reading

Improved Telescope Mounting

mount.jpg

So, any idea what this handy-dandy thing is?

Okay, so maybe I sort of gave it away in the post title…

I know what you’re about to say next. Why are we looking at a mount? What’s so special about a mount—isn’t the telescope itself more important?

And the fact is…I know where you’re going with that. The telescope is important, and without it, the mount would have no purpose. But without the mount, the telescope would be lost—it would have power, but nothing to do.

How’s that work? Continue reading

Improved Telescope Mirrors

e-elt.jpg

When it comes to telescopes, bigger is always better.

Bigger means more light-gathering power and better resolution. And a longer telescope—meaning, a longer focal length—can actually do wonders for your magnification power.

Light-gathering power, by the way, just means how much light a telescope can gather—and it works the same way as rain in a bucket. The bigger the bucket, the more rain you can collect.

And resolution means how much detail you can see in an image. It goes hand in hand with light-gathering power—more light means more detail.

So bigger, for serious astronomers, is the way to go. Until your mirror starts sagging.

Yeah…that’s a bit of a problem. But nowadays, we can fix it. Continue reading

Improved Reflecting Telescopes

newtonian.jpgcassegrain.jpg

Can you tell the difference between these two telescopes?

I’ll give you a hint. They are both reflectors. I know I wrote before that you’ll normally find the eyepiece (the little bit tacked onto the telescope tube) on the side with reflectors, but as you can see here, this isn’t always the case.

Here’s another hint. The mounting setup isn’t the difference I’m talking about. I realize the most obvious difference is probably that one is on a “fork mount” (right) and the other is on an equatorial mount (left), but I’m thinking of something related to the optics.

Don’t worry, we’ll talk about these two mounting systems in a later post.

So, can anyone venture a guess and tell me what’s different about these two telescopes? Continue reading

Light Pollution

new york light pollution.jpg

This photo was taken at night.

Seriously. At night.

But…it looks too bright for the night. I’ll bet I wouldn’t even have to shine a flashlight to see my way around here.

Need proof? Here’s New York City during the day.

new york daytime.jpg

The lighting comes from the sun. Not the billboards and flashing advertisements.

Who needs that many adverts in their life, anyway?

But I’m not interested in judging New York City…all I want is to make a protest against light pollution.

What is light pollution, anyway? Continue reading

Telescope Powers

e-elt.jpg

Have you seen one of these guys before?

You probably have, even if you don’t recognize this brand-new innovation. This is the European Extremely Large Telescope, or the E-ELT. I know, imaginative name, huh? Anyway, it’s not all that different from one of those white observatory domes you’re used to seeing.

Astronomers keep building new observatories. They keep putting new telescopes into space—Hubble, Spitzer, and James Webb, to name a few. But the common goal of all the telescopes they build is to make telescopes that are as big as possibly possible.

Why? I mean, are astronomers just huge braggarts that like to impress us all with their big toys?

Well…I’ll admit that we astronomers have a lot of fun with our toys. But we need huge telescopes for a much better reason than bragging. Continue reading

Refracting & Reflecting Telescopes

telescopes-testing-lowres-3712.jpg

Right next to light, the telescope is an astronomer’s most valuable tool. There are so many different varieties of telescopes, it can be hard to keep them all straight. But they can all be sorted into a few basic types, and that makes choosing one a lot simpler.

Two very common types are reflectors and refractors, and each one in the image above is one of these. You can tell a reflector by its cylindrical design. They all look like cylinders, you say? Well…refractors are a little bit different.

Take the two telescopes on either end of this lineup, for instance. These two—the far left and the far right—are refractors. And you may notice that, unlike most of the rest, they’re not perfect cylinders.

Look closely. You’ll see that, not only is the end pointing up a bit wider than the rest of the telescope, but there’s a little tiny piece tacked onto the end. That same little tiny piece is tacked onto the side for the reflectors.

Every reflector and every refractor can be recognized by these basic qualities. But what they do with light is more important. Continue reading

The Spectrum of Light

Rainbow-Stretching-Hilly-Forest-Mountains.jpg.638x0_q80_crop-smart.jpg

Does this look familiar?

People think of rainbows as a symbol of happiness and fortune. There are even myths that leprechauns hide gold at the end of a rainbow. That’s more of a tease than good fortune, if you ask me, because it’s impossible to reach the end of a rainbow.

That’s right. Impossible.

Some people wonder if rainbows look the same from the back. The answer’s no. They don’t. You wouldn’t see a rainbow if you were standing behind it.

Whoa…why would that be? Continue reading