How Low-Mass Stars Die

When we talk about star death, we’re not really talking about death. We’re talking about the end of a functioning star. Astronomers tend to personify cosmic objects like stars, saying that they are born and die, when it’s more like they transition into something new.

With stars in particular, there’s two main courses their “life cycles,” such that they are, can take: one for massive stars and one for low-mass stars.

We can further subdivide low-mass star “deaths” into those of red dwarfs—like our nearest stellar neighbor, Proxima Centauri—and those of medium-mass stars, like the sun.

But before we dive into the final stages of these stellar life cycles, let’s review what kinds of stars we’re talking about here…

Continue reading

Story of a Star Cluster

Meet M13, one of my favorite globular star clusters.

M13, also known as Messier 13 or the Hercules Cluster, is found—surprise surprise—in the constellation Hercules in the northern hemisphere.

The really cool thing about star clusters is that they look just as spectacular through a telescope as they do in a good image—that is, on a clear, dark night with good seeing conditions.

So…why am I showing you a picture of a star cluster? (Besides the fact that they’re gorgeous?)

Well…after all the talk I’ve done of stellar evolution, I know what you’re going to ask me next…how the heck do we know all this?

That’s a very good question—and one that star clusters can answer.

Continue reading

What Happens in an Expanding Star’s Core?

Depending on their mass, stars can remain stable for millions and even billions of years. The most massive stars live for “only” about 10 million years, but models predict that the least massive live for much longer—longer than cosmologists believe the universe has existed.

As long as stars are stable, they exist on the “main sequence.” That’s just a fancy word for the best balance between temperature and mass. For a while now, we’ve been exploring the main sequence in depth, and I’ve shown you how stars eventually lose stability and “leave” the main sequence.

As stars exhaust their fuel, their internal structures change drastically. Their cores contract, but their outer layers are forced to expand, and they become giants. You’d think the next thing we’d cover would be what happens to these giant stars, right?

Well…not quite! At this point, something downright weird is going on in their cores, and it’s well worth a closer look…

Continue reading

The Story of a Newborn Star

20170620-ALMA-baby-star-3421pco7ab8bqwpfd29mgw.jpg

What happens when a star is born?

A couple of posts ago, I explained how a protostar forms out of a dense cloud core within the interstellar medium. But…wait. What exactly is a protostar again?

A protostar forms when one dense core of an interstellar cloud condenses enough so that gravity can overcome the repulsive forces between the particles, and collapse the cloud. A very cool object then forms in the cloud’s depths, visible only at infrared wavelengths—known as a protostar.

A protostar is compressed enough to be opaque no matter the wavelength—that is, no radiation can pass through it due to its density. However, what separates it from a “true” star is that it’s not compressed enough to generate energy by nuclear fusion.

Astronomers also define a protostar specifically as a young star that’s not yet detectable at visible wavelengths. In other words, protostars emit only longer-wavelength light—that is, infrared and radio waves.

You’d think that becoming a true star would be the next step for a protostar. But that’s not quite how it happens… Continue reading