Radio Astronomy: Limitations

radio astronomy.jpg

Astronomy is a labor of love, and radio astronomy is no different.

As I covered in my last post, radio astronomy deals with the longest wavelengths of the electromagnetic spectrum (a spectrum that includes visible light). Radio waves are not sound waves. They’re radiation just like visible light, infrared, and ultraviolet.

I’ll prove to you that radio waves can’t be sound waves. We get them from space—that’s why there’s such a thing as radio astronomy. But there’s no sound in space. Why? Sound requires something to pass through, and space is a vacuum.

So, we’ve established that radio waves are just another form of electromagnetic radiation. And astronomers love to collect any form of electromagnetic radiation. We can’t touch the stars ourselves, so it’s our only chance at learning about the cosmos.

Why? Because just about everything in the sky emits electromagnetic radiation.

Everything except black holes and a couple other things…but those are topics for another day.

But electromagnetic radiation isn’t easy to collect. And radio waves are especially hard. Continue reading



Imagine you have an image like this. This object is faint and faraway, so you can’t make out much more detail. You know that other stars like it—closer, brighter stars—have looked like this and turned out to be two stars, nestled very close together.

How do you figure out what you’re looking at? How do you increase the resolving power on your telescope so that you can make out more detail?

A telescope’s resolving power is limited by its size. Bigger telescopes can make out more detail on faraway objects—that’s because they can gather more light. But now, we can make telescopes that are so big their size doesn’t limit their resolving power anymore.

The atmosphere does.

We obviously can’t change the atmosphere. So how do we get around this particular predicament? Continue reading