The Atomic Spectrum

Rainbow-Stretching-Hilly-Forest-Mountains.jpg.638x0_q80_crop-smart

Astronomers know that if white light passes through a prism and is bent, it’s separated out into its component colors—the colors of the rainbow.

Astronomers also know that when light interacts with atoms, the building blocks of the universe, the atoms absorb photons of light and reemit them—but in a different direction.

Put these two bits of knowledge together, and astronomers now have everything they need to understand spectra (the plural for spectrum).

spectrum is something I’ve covered in previous posts. In astronomy, it means the wavelengths of electromagnetic radiation spread out so we can analyze them individually. And it’s an astronomer’s most valuable tool.

So, what exactly is a spectrum, and how can we use it to analyze radiation from space and learn more about the universe? Continue reading

Radio Astronomy

radio scope.jpg

Ever seen one of these before?

Yeah, it’s a bit bigger than your average radio antenna.

That’s because its job isn’t to direct radio signals to your house. It’s a radio telescope, and its job is to collect as many radio signals as it possibly can—from outer space, not from a radio station.

Radio astronomy is a tricky business. It has its advantages over visible astronomy—it certainly works better for interferometers—but radio signals are so weak, they’re hard to detect and study. Which is why you’ll never see a small radio telescope.

So, how do astronomers manage to collect and study radio emissions from the cosmos? Continue reading