What is a Black Hole, Really?

If you’re a sci-fi fan, you’ve probably seen these in movies. And I’m guessing you’ve heard a lot about them in pop culture. The problem is, pop culture and movies don’t do a very good job of describing black holes.

First off, let me clear up a common misconception: Black holes do not act like giant space vacuum cleaners, sucking in everything around them. Describing them as “gobbling up” anything is inaccurate.

The representation in movies that bugs me the most is in J.J. Abrams’ Star Trek reboot, when the bad guy falls into a black hole and the good guys almost get pulled in with him. First of all, please…black holes do not growl. And basically none of what happens in that scene is accurate.

So…what are black holes, really?

Continue reading

Binary Neutron Stars

Way back when we spent a number of posts surveying the stars, we covered binary systems. These are star systems that contain multiple stars. Imagine if our sun had a companion, and two stars rose and set in our sky over the cycle of day and night.

It might surprise you that the majority of stars in the universe are actually in binary systems. Our solar system seems to be an outlier in that regard. Most stars have a companion or two or six…

…and so do some neutron stars.

Remember that neutron stars are the collapsed remnants of massive stars that have gone supernova. If most stars are part of binary systems, then naturally, some of these stars will evolve into neutron stars and still be part of their birth system.

Not all neutron stars are still part of their birth system. As I covered in my last post, many neutron stars rocket through space at incredible velocities, leaving their birth system behind.

Those that stay, though, provide astronomers with fascinating insight into the nature of neutron stars.

Continue reading

Why Neutron Stars Should Exist

Above is a theoretical rendering of a white dwarf, the collapsed husk of a low-mass or medium-mass star. Interestingly enough, these strange cosmic objects—which begin their existence as intensely hot balls of carbon the size of the Earth—may eventually cool off and crystalize into giant space diamonds.

White dwarfs are made up of free-floating hydrogen and helium nuclei and degenerate electrons—and their mass is supported by the nature of these electrons.

But degenerate electrons, like any other material, have a specific material strength. What happens if they’ve, well…just got too much stuff to support?

Continue reading

What Exactly are Supernovae?

This is one topic I bet you guys have been looking forward to since I first started posting about stellar evolution. Well, I won’t disappoint you!

In my last post, we covered how a massive star gets to the point of supernova. When it exhausts all the nuclear fuel in its core, iron ash is left behind—which can’t be fused or split for energy. That’s a dead end for the star, and the core begins to freely collapse…

Until a shockwave, originating in the center of the star, pushes outward. It’s stalled at first, but convection as in-falling material bounces off the dense core gives it a boost, and the star bursts apart.

Now, we’ll cover all the ins and outs of these spectacular explosions.

Continue reading

How Massive Stars Die

When people think of star death, they most often think of supernovae (plural for supernova). So why haven’t I spent the past bunch of posts on star death talking about them?

Because supernovae are not actually the most common fate to await a star. Only a small fraction of the stars in our universe are massive enough to go supernova. Most stars die fairly quietly, gently expelling their outer layers and contracting to form white dwarfs.

No such gentle fate awaits the most massive stars.

But why do massive stars go supernova?

Continue reading

What About Binary Systems?

In the constellation of Perseus, there is a star named Algol that exists in a binary system. The binary consists of two stars: a massive main-sequence star and a less massive giant.

According to what we’ve explored so far…that doesn’t make any sense.

More massive stars evolve faster than less massive ones. They expand into giants before less massive stars do. In any one binary system out there, we should observe a more massive giant and a less massive main-sequence star, not the other way around.

But the Algol system is not alone in this peculiarity. Over half the stars in the universe are binaries, and in a number of those, the more massive star is still on the main sequence.


Continue reading

What are White Dwarfs?

Now that we’re finally talking about white dwarfs, we’re getting into the really cool stuff.

In my last post, we explored planetary nebulae, and we left off with a question: where does the fast wind that forms planetary nebulae come from? Well, remember that planetary nebulae are formed from the atmospheres of medium-mass stars, but there’s still the stellar interior to worry about.

White dwarfs are objects comparable in size to our own Earth. They are the remains of medium-mass stars like our own sun. Often, you can see a white dwarf at the center of a planetary nebula with a large telescope. Together, they form what’s left of a star after it loses stability completely.

But there’s way more to a white dwarf than that…

Continue reading

What Happens After Helium Fusion?

Back in August—sorry I took so long!—we talked about the helium flash, an explosion that occurs within stars when helium nuclei begin to fuse within a degenerate core.

So…this is not what the helium flash would look like.

Even though it’s a powerful explosion, it happens in such a small region in the center of the star that we wouldn’t see it at all, and the star’s outer layers absorb most of the energy from the explosion. I just thought it was a cool picture 🙂

In any case…what happens after the helium flash?

Continue reading

What Happens in an Expanding Star’s Core?

Depending on their mass, stars can remain stable for millions and even billions of years. The most massive stars live for “only” about 10 million years, but models predict that the least massive live for much longer—longer than cosmologists believe the universe has existed.

As long as stars are stable, they exist on the “main sequence.” That’s just a fancy word for the best balance between temperature and mass. For a while now, we’ve been exploring the main sequence in depth, and I’ve shown you how stars eventually lose stability and “leave” the main sequence.

As stars exhaust their fuel, their internal structures change drastically. Their cores contract, but their outer layers are forced to expand, and they become giants. You’d think the next thing we’d cover would be what happens to these giant stars, right?

Well…not quite! At this point, something downright weird is going on in their cores, and it’s well worth a closer look…

Continue reading