
For those of you who missed my last couple of posts, allow me to introduce the neutron star: a stellar remnant similar to a white dwarf, but much denser, so dense that its protons and electrons have combined to form a neutron soup.
A neutron star forms from the collapsing core of a star between 10 and 20 M☉ (solar masses). Its collapse produces powerful magnetic fields and extremely high temperatures, but because it becomes so small—less than the size of Los Angeles—it is very faint and radiates away its heat very slowly.
The exception to that rule comes in the form of two powerful beams of radiation that blast away from the object’s magnetic poles. As a neutron star spins—at around a hundred times per second—these radiation beams sweep across the sky like the the beams of a lighthouse.
If these beams happen to sweep over Earth, human observers see regular, rapid pulses of light. This visual phenomenon produced by neutron stars is called a pulsar.
Now that we have a basic understanding of neutron stars and pulsars, let’s explore some of the details of how these extreme objects work.
Continue reading