Telescope Imaging Systems

sombrero galaxy visible.jpg

Have you ever seen an image like this?

Okay, maybe you have…online. What with the spread of the internet these days, I’m guessing that at one point you have seen something like this on a page of image search results.

That’s the thing, though. You’ve seen this incredible phenomenon on a computer screen. But have you ever seen it through a telescope?

Don’t worry—if you haven’t had an opportunity to look through a telescope, you’re not missing out. You’re not going to see the Sombrero Galaxy above in all its photographed glory just from looking through the eyepiece of a telescope.

So…how do we get an image like this, then? Continue reading



Imagine you have an image like this. This object is faint and faraway, so you can’t make out much more detail. You know that other stars like it—closer, brighter stars—have looked like this and turned out to be two stars, nestled very close together.

How do you figure out what you’re looking at? How do you increase the resolving power on your telescope so that you can make out more detail?

A telescope’s resolving power is limited by its size. Bigger telescopes can make out more detail on faraway objects—that’s because they can gather more light. But now, we can make telescopes that are so big their size doesn’t limit their resolving power anymore.

The atmosphere does.

We obviously can’t change the atmosphere. So how do we get around this particular predicament? Continue reading

Improved Telescope Mounting


So, any idea what this handy-dandy thing is?

Okay, so maybe I sort of gave it away in the post title…

I know what you’re about to say next. Why are we looking at a mount? What’s so special about a mount—isn’t the telescope itself more important?

And the fact is…I know where you’re going with that. The telescope is important, and without it, the mount would have no purpose. But without the mount, the telescope would be lost—it would have power, but nothing to do.

How’s that work? Continue reading