Our Sun: The Chromosphere

sun layers

This diagram is a tiny bit misleading.

Here, it looks like the chromosphere is the visible surface of the sun, with the photosphere just below. Really, we never see the chromosphere. If you ever look through a solar telescope at the sun, the photosphere is the surface that you see.

The sun is structured a lot like the Earth, just in that it has a core, a dense region between the core and the surface, a “surface” layer, and a few atmospheric layers. The chromosphere is part of that solar atmosphere. And you never see it.

Well…almost never. Continue reading

Infrared & High-Energy Astronomy

atmosphere.jpg

You probably recognize this image. You see something like it whenever you look up at the sky. Some days are clearer than others—some, you might even see a completely blue sky—but regardless, you know that this is an image of our atmosphere.

But do you know just how much your atmosphere does for you?

We’ll talk about how it protects you from space rocks later on. For now, consider the energy from our own sun. The sun doesn’t just send visible light our way—it operates in all wavelengths of the electromagnetic spectrum.

Some of those wavelengths are harmful, like gamma rays, X-rays, and ultraviolet radiation. Others, like infrared radiation, microwaves, and radio waves, are perfectly fine.

The atmosphere doesn’t really pick and choose which wavelengths get through to the surface. It blocks out some radiation it doesn’t need to. At least it protects us from the harmful wavelengths.

But that’s bad news for astronomers, because those wavelengths still contain useful information about the universe.

So how to we capture and analyze them? Continue reading

Radio Astronomy: Limitations

radio astronomy.jpg

Astronomy is a labor of love, and radio astronomy is no different.

As I covered in my last post, radio astronomy deals with the longest wavelengths of the electromagnetic spectrum (a spectrum that includes visible light). Radio waves are not sound waves. They’re radiation just like visible light, infrared, and ultraviolet.

I’ll prove to you that radio waves can’t be sound waves. We get them from space—that’s why there’s such a thing as radio astronomy. But there’s no sound in space. Why? Sound requires something to pass through, and space is a vacuum.

So, we’ve established that radio waves are just another form of electromagnetic radiation. And astronomers love to collect any form of electromagnetic radiation. We can’t touch the stars ourselves, so it’s our only chance at learning about the cosmos.

Why? Because just about everything in the sky emits electromagnetic radiation.

Everything except black holes and a couple other things…but those are topics for another day.

But electromagnetic radiation isn’t easy to collect. And radio waves are especially hard. Continue reading

Interferometry

Double-stars-Rayleigh-limit-ST

Imagine you have an image like this. This object is faint and faraway, so you can’t make out much more detail. You know that other stars like it—closer, brighter stars—have looked like this and turned out to be two stars, nestled very close together.

How do you figure out what you’re looking at? How do you increase the resolving power on your telescope so that you can make out more detail?

A telescope’s resolving power is limited by its size. Bigger telescopes can make out more detail on faraway objects—that’s because they can gather more light. But now, we can make telescopes that are so big their size doesn’t limit their resolving power anymore.

The atmosphere does.

We obviously can’t change the atmosphere. So how do we get around this particular predicament? Continue reading

Telescope Powers

e-elt.jpg

Have you seen one of these guys before?

You probably have, even if you don’t recognize this brand-new innovation. This is the European Extremely Large Telescope, or the E-ELT. I know, imaginative name, huh? Anyway, it’s not all that different from one of those white observatory domes you’re used to seeing.

Astronomers keep building new observatories. They keep putting new telescopes into space—Hubble, Spitzer, and James Webb, to name a few. But the common goal of all the telescopes they build is to make telescopes that are as big as possibly possible.

Why? I mean, are astronomers just huge braggarts that like to impress us all with their big toys?

Well…I’ll admit that we astronomers have a lot of fun with our toys. But we need huge telescopes for a much better reason than bragging. Continue reading

The Lunar Eclipse

eclipse_total_espanek_10-27-2004-e1358526755212.jpg

Have you ever heard of the blood moon?

It’s named for its red appearance. Sometimes it’s even mistaken for Mars, as in the case of the “Mars hoax” back in 2002. It was claimed then that Mars would look as large as the full moon on August 27.

In truth, Mars will never appear as large as the full moon to the naked eye (a fancy way of saying that you’re not looking through a telescope or binoculars). What really happened was that the moon passed through the Earth’s shadow.

Wait a second. The Earth has a shadow? And it’s red? Continue reading

What Matters?

periodic_table_big

The simplest approach to chemistry is to start basic.

Not basic as in acids and bases, ha-ha…sorry, bad chemistry joke.

I mean basic as in, what the heck even is chemistry?

I admit that I’m better versed in astronomy than chemistry. I’ve studied chemistry for exactly one year of my life—last year, 12th grade. Astronomy, on the other hand, has been my strong suit and my passion for several years.

For me, these Wednesday posts are like a refresher course. I don’t actually remember everything I’ve learned. Good thing I bought a copy of the textbook.

So, I’ll start simple—because chemistry is the study of breaking complex things down to the simplest bits possible. It’s the opposite of astronomy. Astronomy studies huge, mind-blowing phenomena. Chemistry, on the other hand…is mind-blowingly small.

It’s the study of matter. Continue reading