Star Types Demystified

image.png

By now, I’ve introduced you to a lot of different ways to classify stars.

Months ago, I talked about the different spectral classes—O, B, A, F, G, K, and M. Even before that, I told you about apparent visual magnitude, our ranking system for how bright stars appear to the naked eye.

More recently, we explored absolute visual magnitude and the related absolute bolometric magnitude and luminosity. All these are related to a star’s actual brightness, not just how bright they seem to be from Earth.

And last but not least, we talked about the H-R diagram and how to rank stars by their luminosity classification.

In short, it may seem like sorting stars is a complicated business. But it’s not really. And here, I intend to give you an overview to put all this together. Continue reading

How Far Are the Stars?

starscape_by_martianlightsaber.jpg

Stars don’t look small because they’re really the size of pinholes in a blanket. The smallest are the size of Earth. The largest have 128,865,170 times Earth’s diameter.

They look small in the sky because they’re distant. It’s for the same reason you can tell how far away your surroundings are by how small they appear; you know the mountains on the horizon are far away because they look shorter than your house.

The nearest star to our solar system is 4.3 light-years away. But what exactly is a light-year?

Light seems to travel instantaneously from your flashlight to the nearest surface, but it actually has a finite speed. In one second, it travels 299,792 km—fast enough to wrap itself around Earth’s equator 7.5 times.

In one year, light covers 9,460,730,472,580.8 kilometers, enough to wrap around the sun’s equator 2160.5 times. Four times that is the distance to the nearest star.

But how do we know this? Continue reading

The Starlight We Can’t See

heic0807c.jpg

Find yourself a dark, unpolluted night sky on a clear night free of clouds, and you are very likely to look up into the heavens and see a sight quite like this. It’s what we see of the Milky Way, our galaxy.

When I’m at an astronomy event with a sky like the one above, I find it absolutely incredible. Do you notice how the stars don’t all look the same?

A couple are startlingly bright, there are numerous stars that are somewhat dimmer, and if you look really hard, you notice that even the dark night background is sprinkled with stars so faint they can barely be seen.

But what if I told you that you’re not even seeing the half of it? Continue reading

The True Brightness of Stars

star-field-3.jpg

Have you ever looked up at the night sky and noticed that while relatively bright stars outline the constellations, there are numerous other stars that are almost too faint to see with the naked eye?

If you ever noticed this, you probably guessed that the brighter stars are literally brighter, and the fainter stars truly are fainter. Or maybe you guessed that they don’t vary in brightness that much, but fainter stars are much farther away.

But that’s not really true…or, at least, it’s not the whole answer.

So what’s the real reason why some stars appear to be brighter than others—and how can we tell how bright they really are? Continue reading

Stars and Proper Motion

uma.gif

Recognize this constellation?

Well, at the time stamp of about 2000 AD (CE), I think you will. It’s one of the most famous constellations in the night sky.

Well, technically, it’s not a constellation at all.

It’s an asterism—a commonly recognized grouping of stars that isn’t actually official as a constellation. There are tons of asterisms that you no doubt recognize…the Summer Triangle, the Great Square of Pegasus, the Big Dipper.

That’s right. That mess of stars up there that keeps changing for some reason…that’s the oft-recognized Big Dipper, part of the constellation Ursa Major.

So why the heck are the stars moving? Continue reading

Stars: Naming and Brightness

pegasus532x412

Meet Pegasus, and the constellations surrounding it. As I said in my last post, constellations are just regions of space.

Yes, they are named after mythical beasts and ancient queens, but for scientific purposes, all that matters are the regions they denote.This way, astronomers can easily find obscure, faint objects in the sky.

And telescopes can be easily programmed to find the same objects for those with less experience.

Keep in mind, though, that constellations only appear to fall in the same horizontal plane over Earth’s surface. Some of these stars, even in the same constellation, are light-years apart from one another.

So, in that case, the brighter stars must be closer to us and the dimmer stars farther away, right?

Wrong. Continue reading