The Starlight We Can’t See

heic0807c.jpg

Find yourself a dark, unpolluted night sky on a clear night free of clouds, and you are very likely to look up into the heavens and see a sight quite like this. It’s what we see of the Milky Way, our galaxy.

When I’m at an astronomy event with a sky like the one above, I find it absolutely incredible. Do you notice how the stars don’t all look the same?

A couple are startlingly bright, there are numerous stars that are somewhat dimmer, and if you look really hard, you notice that even the dark night background is sprinkled with stars so faint they can barely be seen.

But what if I told you that you’re not even seeing the half of it? Continue reading

What Causes the Lunar Phases?

all-phases-of-the-moon-on-a-clear-dark-sky-516059951-59f0f494685fbe0011fc0523.jpg

We see it almost every night of our lives. For thousands of years, the greatest philosophers and astronomers alike have watched its face change and wondered why.

Step outside and observe the moon every day for a month and you will notice something fascinating. Over the course of the entire month, the moon will go through an entire cycle of phases—no more, no less.

But why?

The phases of the moon are something I’ve talked about before, but I wanted to spend some time on a few common misconceptions this time around and show you the truth behind the lunar phases. Continue reading

Life vs. Rocks: What Makes Them Different?

Welcome to my third “Science Answers” post! About a month ago, I sent out a post requesting science questions from all of you; you can find it here. This post addresses the third of the questions I was asked. If you have a question, you can ask it in the comments here or on that post, or ask it in an email. Or find me on Facebook!

Q: What is the division between the physical and life sciences? For example, why do we think of rocks in a different category than we do plants and animals? (asked by Katherine)

Okay, wow. Another great question! This one is almost as fundamental as gravity, which I answered earlier.

Gravity may be pretty much the singular reason why the universe works the way it does, but the difference between the physical and life sciences is an important distinction when trying to understand the world around us.

So let’s start with what we know. When you hear “physical science,” what do you think of?

 

This slideshow requires JavaScript.

You might think of any number of things—but I’ll bet you that none of those things are alive in the traditional sense.

So, how about the biological sciences? What does that make you think of?

 

This slideshow requires JavaScript.

Maybe plants…or cute animals?

Whatever you think of, I’m going to guess they’re all alive.

But what makes something alive or not alive? What makes zebras leap and run, whereas rocks are forever immobile? What makes these living beings different from a vast galaxy or the Pillars of Creation? Continue reading

What is Gravity, Anyway?

Welcome to my second “Science Answers” post! About a month ago, I sent out a post requesting science questions from all of you; you can find it here. This post addresses the second of the questions I was asked. If you have a question, you can ask it in the comments here or on that post, or ask it in an email. Or find me on Facebook!

Q: What is gravity? (asked by Simon)

Wow…great question. This is a question the greatest scientific minds have asked and tried to answer for centuries. It’s a question not even Stephen Hawking, the scientific genius of the century, has fully answered.

There are a few parts to the gravity question, and they have each been addressed one by one over time:

  • How does gravity work?
  • What is gravity?
  • Why does gravity work?

Isaac Newton stood on the shoulders of the giants before him—Aristotle, Ptolemy, Copernicus, and Kepler—and figured out how gravity works. But he was at a loss to explain what exactly this mysterious force was.

Einstein built on Newton’s work and came up with a theory for what gravity is—that is, distortions in space-time.

spacetime

We have yet to understand why gravity works. Why is space-time warped? Why do objects distort it as if it were the material of a trampoline? What exactly is the nature of space?

But, lucky for me, the question above specifically asks what gravity is. And that, I can explain.

The best way to do that is to turn one of gravity’s oldest tricks, one that has perplexed scientists and philosophers for thousands of years: What makes the planets move? Continue reading

The Secrets of Magnets

Welcome to my first “Science Answers” post! About a month ago, I sent out a post requesting science questions from all of you; you can find it here. This post addresses the first of the questions I was asked. If you have a question, you can ask it in the comments here or on that post, or ask it in an email. Or find me on Facebook!

And by the way…I do apologize for getting this post out so late. But here you are.

Q: What is magnetism? And what’s the difference between electromagnetism and the “magnetism” found in minerals? (asked by Simon)

So…let’s start with something most of us are familiar with.

fridge magnets.jpg

Can I just say, I’ve never seen a fridge with so many magnets?

Usually, the magnets in our lives serve practical purposes. In your typical household, these fridge magnets would be used to hold up notes, photos, recipes, etc. that you’d want to display in your kitchen.

(Of course, magnet collecting is a perfectly reasonable hobby, if the sheer variety on this fridge is any indication.)

Magnets are something we take for granted. But they are even more a part of our lives than we realize. Continue reading

Science Questions, Anybody? (#1)

20847907-3d-people-man-person-talking-arguing-Question-mark-and--Stock-Photo.jpg

I want to try out something new. Up until now, for every post on this blog, I have chosen a topic and written about it in the hopes that you’re curious about it.

This time, I want to know what you are curious about.

You’re welcome to ask any question about science. No matter what it is, I will do my best to answer it. If I don’t immediately know the answer, I’ll research it. And remember—there are no stupid questions, only stupid answers.

Just leave your question in the comments below. If you’re not a WordPress user, you’ll need to enter your name and email address, but I’m the only person who will ever see your email.

I will answer every question that’s asked. Depending on how many there are, I’ll either answer them all in a post coming up soon, or I’ll answer one in each of a series of posts to be published over the next few days.

If you think you know the answer to your question but aren’t quite sure, you’re still welcome to ask it—and even let me know what you think the answer is! I’ll make sure to point out what you’re right about when I answer your question.

I’ll also reproduce the question and credit you (the name you use in the comment form) for asking it. Then I’ll answer your question in detail. If anything’s still not clear afterwards, you are welcome to comment again or email me.

All answers will be archived on my “Myth & Science” page, underneath the “Science Answers” drop-down menu.

I’ll keep comments open for a few weeks. But if you miss out on this first “Science Questions, Anybody?”, don’t worry about it. I’ll do this again sometime soon.

Questions, anyone?

Evidence vs. Belief

148984577.jpg

I remember something my ninth grade advanced biology teacher told our class. It was essentially a story about an invisible dragon.

Now why, you ask, would a biology teacher teach us about an invisible dragon?

Her message had nothing to do with the dragon, and everything to do with the lengths one of the story’s characters went to in order to disprove the dragon’s existence. Her intention was to help her students distinguish between evidence and belief.

On a broader level, her intention was to show us the difference between science and religion. See, back when I was in eighth and ninth grade, there seemed to be a lot of controversy in schools surrounding science and religion.

Teachers of students that age felt the need to preempt their entire class with a disclaimer—that students were still free to believe whatever they believed, no matter what science the class taught.

Most teachers just made a general announcement on the first day. But my biology teacher told us this story about a dragon—and it continues to impact me to this day.

It goes like this: Continue reading

The True Brightness of Stars

star-field-3.jpg

Have you ever looked up at the night sky and noticed that while relatively bright stars outline the constellations, there are numerous other stars that are almost too faint to see with the naked eye?

If you ever noticed this, you probably guessed that the brighter stars are literally brighter, and the fainter stars truly are fainter. Or maybe you guessed that they don’t vary in brightness that much, but fainter stars are much farther away.

But that’s not really true…or, at least, it’s not the whole answer.

So what’s the real reason why some stars appear to be brighter than others—and how can we tell how bright they really are? Continue reading

Stars and Proper Motion

uma.gif

Recognize this constellation?

Well, at the time stamp of about 2000 AD (CE), I think you will. It’s one of the most famous constellations in the night sky.

Well, technically, it’s not a constellation at all.

It’s an asterism—a commonly recognized grouping of stars that isn’t actually official as a constellation. There are tons of asterisms that you no doubt recognize…the Summer Triangle, the Great Square of Pegasus, the Big Dipper.

That’s right. That mess of stars up there that keeps changing for some reason…that’s the oft-recognized Big Dipper, part of the constellation Ursa Major.

So why the heck are the stars moving? Continue reading

Distances Between Stars

milkyway

When you look up into the sky on a clear night away from the glare of the city, you see trillions upon trillions of stars.

Thousands of years ago, the classical astronomers saw the same thing you do today—except perhaps a little different, due to the ever-changing cosmos. And, like you, they weren’t satisfied with just looking. They wanted to know what was out there.

For hundreds of years, they developed model after model to explain why the stars seemed to orbit the Earth and why certain objects in the sky—which they named planetsseemed to wander backwards from time to time.

Tycho Brahe, an astronomer known mainly for what he got wrong, dismissed the idea of the Earth orbiting the sun because he could detect no parallax between the stars.

If he had been able to measure parallax, he might have realized that the universe was much larger than any of his fellow classical astronomers imagined.

So what is parallax…and how can it help us measure the distances between stars? Continue reading